$f(x, y)$ a function. Some of its level sets:

Impassible to draw a nonzero vac. pavendicular to level set © this point.
so ∇f is cither $\overrightarrow{0}$ here, or DNE.
(so it is a critical pt.)
i.e. if a levelset ever looks like

$$
\text { Let } f(x, y)=x^{2} y . \text { Suppose we want to find the tangent plane }
$$ to the graph of this function when $(x, y)=(3,0)$, and that we want to use the $\nabla F\left(\mathbf{r}_{0}\right) \cdot\left(\mathbf{r}-\mathbf{r}_{0}\right)=0$ formula. What is an appropriate choice of F ?

What do we use as \mathbf{r}_{0} ?

Recall, the graph of $f(x, y)$ is the surface defined by

$$
z=f(x, y)
$$

e.g. $\quad z=x^{2} y . \quad(x)$

Recall the plane formula:

Rearrange (*) as ceder $=$ constant
e.g. $x^{2} y-z=0$

$$
x^{2} y / z=1
$$

In our situation, $z=0$ @ pt in question, so second is no good (but at a ptinhere $z \neq 0$ this would be fine t_{∞}).

So let $F(x, y, z)=x^{2} y-z$.

$$
\begin{aligned}
\nabla F\left(\vec{r}_{0}\right) & =\nabla F(3,0,0) \\
& =\langle 0,9,-1\rangle
\end{aligned}
$$

So tan. plave eq is

$$
\begin{aligned}
& \langle 0,9,-1\rangle \cdot(\langle x, y, z\rangle-\langle 3,0,0\rangle)=0 \\
& \quad 9 y-z=0 \\
& \text { or } z=9 y .
\end{aligned}
$$

Consider the plane $z=9 y$. Which of the following lines is

perpendicular to this plane?

$$
\begin{gathered}
x=2, y=-3+9 t, z=-2+t \\
\mathbf{r}(t)=\langle 0,-2,7\rangle+t\langle 0,18,-2\rangle \\
\frac{x-7}{3}=y-2=\frac{z+1}{9} \\
\text { None of the above }
\end{gathered}
$$

Consider the plane $z=9 y$. Which of the following lines is

parallel to this plane?

$$
\begin{gathered}
x=2, y=-3+9 t, z=-2+t \\
\mathbf{r}(t)=\langle 0,-2,7\rangle+t\langle 0,18,-2\rangle \\
\frac{x-7}{3}=y-2=\frac{z+1}{9} \\
\text { None of the above }
\end{gathered}
$$

So the line and plane are perpendicular when \vec{n} and \vec{v} are parallel. $\quad 9 y-z=0$

$$
0 x+9 y+(-1) z=0
$$

$$
\text { So } \vec{n}=\langle 0,9,-1\rangle \text { for example. }
$$

So the live and pave are parallel when

$$
\vec{n} \cdot \vec{v}=0 .
$$

$$
\begin{aligned}
& \frac{x-1}{3}=y-2=\frac{z+1}{9}=t \\
& x=3 t+1 \quad y=t+2 \quad z=9 t-1 . \\
& \vec{v}=\langle 3,1,9\rangle
\end{aligned}
$$

