f(x,y) a function. Some of its level sets: critical pl that's a local max Impossible to closu a nonzero vec.

perpendicular to level set @ this point,

50 Vf is either O here, or DNE. (so it is a critical pt.)

i.e. if a level set ever looks like
this must
be a critical point.

Let $f(x,y)=x^2y$. Suppose we want to find the tangent plane to the graph of this function when (x,y)=(3,0), and that we want to use the $abla F(\mathbf{r}_0) \cdot (\mathbf{r} - \mathbf{r}_0) = 0$ formula. What is an

appropriate choice of F?

What do we use as r_0 ?

Recall, the graph of
$$f(x,y)$$
 is the surface defined by

 $Z = f(x,y)$

e.g. $Z = x^2y$. (x)

Recall the plane formula:

 $\overrightarrow{rr} \cdot (\overrightarrow{r} - \overrightarrow{r}_o) = 0$

a normal $x = x^2y$ any pt. in the plane vec (x,y,z)

$$\nabla F(\dot{r}_{0}) = \nabla F(3,0,0)$$

$$= \langle 0, 9, -1 \rangle$$

$$5 \Rightarrow \tan plane eq is$$

$$\langle 0, 9, -1 \rangle \cdot (\langle x, y, z \rangle - \langle 3, 0, 0 \rangle) = 0$$

$$9y - z = 0$$

$$z = 9y$$

Consider the plane z=9y. Which of the following lines is *perpendicular* to this plane?

$$x=2, y=-3+9t, z=-2+t$$
 ${f r}(t)=\langle 0,-2,7
angle +t \langle 0,18,-2
angle$ ${x-7\over 3}=y-2={z+1\over 9}$

None of the above

Consider the plane z=9y. Which of the following lines is *parallel* to this plane?

parallel to this plane?
$$x=2,\,y=-3+9t,\,z=-2+t$$
 ${f r}(t)=\langle 0,-2,7\rangle+t\langle 0,18,-2
angle$

$$rac{x-7}{3} = y-2 = rac{z+1}{9}$$

None of the above

So the line and plane are perpendicular when it and \vec{v} are parallel. 9y - z = 0 0x + 9y + (-1)z = 0So $\vec{n} = (0, 9, -1)$ for example.

 $\vec{h} \cdot \vec{V} = 0.$

$$\frac{x-7}{3} = y-2 = \frac{z+1}{9} = t$$

$$x = 3t + 7$$
 $y = t + 2$ $z = 9t - 1$.